请选择 进入手机版 | 继续访问电脑版

张飞实战电子

  论坛   单片机   <简单的说>之拉普拉斯变换
返回列表
查看: 4855|回复: 0
收起左侧

<简单的说>之拉普拉斯变换

[复制链接]

42

主题

60

帖子

2663

积分

金牌会员

Rank: 6Rank: 6

积分
2663
发表于 2018-9-29 08:21:18 | 显示全部楼层 |阅读模式
解释要让人听得懂,映射、空间、变换这样的数学术语,也许211、985的大神能听得懂,一般学校的本科生,可能在学电路原理和模拟电子之前,复变函数与积分变换都没学过,只会越听越糊涂。

简单的说,傅里叶变换也罢,拉普拉斯变换也罢,都是把一个信号分解成若干(实际上可以是无数)信号之和,或者说若干信号叠加的手段。

对于非周期性信号,只要是在时间轴上可积的信号,简单说(不严谨)就是横轴上方信号曲线所占的面积算正,横轴下方信号曲线所占的面积算负,把所有面积加起来不是无穷大,就算这个信号可积,例如单个或者有限个脉冲信号就是可积的,因为其所占面积加起来是有限的。对于周期性的信号,例如一定频率的交流或者脉冲信号,要求在一个周期内是可积的。那么这类信号,就可以用傅里叶变换分解为若干(无数)不同频率(也包括不同相位)正弦信号之和,或者说相当于不同频率正弦信号的叠加。

一般RLC电路(线性电路)处理正弦信号较为容易,因为对于稳定的正弦信号,电阻、感抗和容抗都是固定不变的,那么如果要处理非正弦周期性信号,只消用傅里叶变换把信号分解为正弦信号的叠加,然后按照正弦信号处理,最后把处理结果再重新叠加起来(傅里叶反变换)就行了。

线性电路对某一频率正弦信号,输出和输入的关系,叫做这个线性电路的频率响应。对于非正弦周期性信号,例如矩形波信号,甚至非周期性信号,可以使用傅里叶变换把信号分解为不同频率正弦信号的叠加,每个正弦信号可以看作非正弦信号的一个成分,对每个成分求对应频率下的频率响应,最后叠加起来,就成了非正弦信号的响应。

也就说是,傅里叶变换带来的好处,就是把很难处理计算的非正弦信号化为容易处理计算的正弦信号。

那么拉普拉斯变换呢?如果信号在时间轴上不可积,傅里叶变换就不能使用了,但拉普拉斯变换证明,这种信号虽然不能分解成正弦信号之和,但仍然有可能分解成幅度(峰值)按照时间增长,成指数规律增加的正弦信号之和,也就是若干(无数)不同频率的指数增幅正弦信号之和。例如单位阶跃信号在时间轴上不可积(所占面积无穷大),傅里叶变换不能用,但拉普拉斯变换却能用。

拉普拉斯(反)变换中的e^(st),本质就是一种指数增幅(也包括负增幅,即衰减)正弦信号,因为s=σ+jω,根据欧拉公式,e^(st)=e^(σt+jωt)=(e^(σt))(cosωt+jsinωt)=(e^(σt))cosωt+j(e^(σt))sinωt,无论取其实部,还是取其虚部,都相当于指数增幅(e^(σt)随时间t增加而增长)正弦信号。

对于指数增幅正弦信号,线性系统也是容易处理的,因此拉普拉斯变换也可以把很难处理计算的某些信号(例如单位阶跃信号)化为容易处理计算的指数增幅正弦信号。

这就是为什么处理冲激响应、阶跃响应等,多用拉普拉斯变换处理的原因。

从上面的分析可以看出,傅里叶变换实际上可以看作拉普拉斯变换的特例(σ=0的情况),因此传递函数将s换成jω,也就是相当于σ=0,就成了频率响应函数。反过来说,传递函数就是“指数增幅(或者衰减)正弦信号”的“频率响应函数”,或者叫做“复频率响应函数”,“复频率”,也就是s,相当于“同时考虑频率和增幅(或者衰减)系数”。

说白了,傅里叶变换、拉普拉斯变换甚至小波变换等,其本质就是把“不容易处理的信号”变换成“容易处理的信号之叠加”,对于傅里叶变换,这个“容易处理的信号”是正弦信号;对于拉普拉斯变换,这个“容易处理的信号”是指数增幅正弦信号;对于小波变换,这个“容易处理的信号”就是某种特殊的小波信号,不同的小波信号种类,叫做不同的“小波基”。

上述分析是用电路举例,但用于自控也是一样的,因为二者都能化为相同的信号流图。电路和自控在很多内容上,数学内核是相同的,例如运放的“虚短”和自控系统中“负反馈使得余差减小直到趋向于0”的本质是完全相同的,想想看为什么?(提示,数学本质都是负反馈)

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

收藏:0 | 帖子:56

有图有真相